VCE SPECIALIST MATHEMATICS UNITS 1 & 2 – ESSENTIAL CAS CALCULATOR SKILLS

INCL. WORKED EXAMPLES & AN END-OF-YEAR SKILLS CHECKLIST

Reference CAS calculator: Texas Instruments TI-Nspire CAS II

43

b±

b

Contents

Topic chapters (Reference book: Cambridge Specialist Maths Units 1 & 2)	2
Chapter 1: Reviewing Algebra; Chapter 4: Additional Algebra	2
Chapter 2: Number Systems and Sets	4
Chapter 3: Sequences and Series	5
Chapter 9: Combinatorics	7
Chapter 11: Matrices	8
Chapter 14: Simulation, Sampling and Sampling Distributions	10
Chapter 17: Graphing Functions and Relations	11
Chapter 18: Complex Numbers	12
Summary of essential skills	14
Appendix: List of useful TI-Nspire CAS calculator shortcuts	15

Topic chapters

Chapter 1: Reviewing Algebra: Chapter 4: Additional Algebra

Solving equations

1: Solve

This command is used to solve equations, simultaneous equations and some inequalities.

An approximate (decimal) answer can be obtained by pressing <u>ctrl</u> <u>enter</u> or by including a decimal number in the expression.

The following screens illustrate its use.

4 1.1 ≽	•TI-Nspire	RAD 🛙 🗙 4 1.1 1	• *TI-Nspire	RAD 📗 🗙	4 1.1 ▶ *TI-Napir	RAD 🖥 🗙
solve(2·x-5*	-3·x+9,x)	$x = \frac{14}{5}$ solve(a	• x+b=c• x+d,x)	$x = \frac{-(b-d)}{a-c}$	$solve\left(cos(x)=\frac{1}{2},x\right)$	
$solve(x^3-x^2)$	-2·x+2=0,x)	solve()	$=\frac{x-2}{3\cdot x+1}x$	$x = \frac{-(y+2)}{3 \cdot y - 1}$	$x = \frac{(6 \cdot nI - 1) \cdot \pi}{3}$	$\int dr x = \frac{(6 \cdot nl + 1) \cdot \pi}{3}$
solve $\left(\frac{1}{x} = \frac{x}{1-x}\right)$	$\left(\frac{1}{\sqrt{5}}\right) = \frac{-(\sqrt{5}+1)}{2}$	$srx = \frac{\sqrt{5}-1}{2}$ solve(=4· log (x+8),x)	$\frac{y}{x=5^{4}-8}$	$\operatorname{solve}\left(\cos(x)=\frac{1}{2}x\right) 0\leq x\leq 2\cdot \pi$	$x = \frac{\pi}{3} \text{ or } x = \frac{5 \cdot \pi}{3}$
1		• 1		ļ	1	4
4 1.1 ▶	*TI-Nspire	RAD 🗎 🗙 📢 1.1 1	•TI-Nspire	RAD 📗 🗙	4 1.1 ▶ •TI-Nspire	e pad 🗐 🗙
solve(2·x+3·	y=6 and x-y=1,xy) x=-	2 and y=4 solve	$\frac{d}{dx}(x^3)=2x$	$\frac{-\sqrt{6}}{3}$ or $x = \frac{\sqrt{6}}{3}$	solve(x ³ -x ² -2·x+2>0,x)	√2 <x<1 or="" x="">√2</x<1>
		5 5 1	b \	1	(x-2-r)	x≥ln(7)+2
. (12·x+3	· v=6 ()	9 4 .	2	-	solve(e = 27,x)	
solve $\left(\begin{cases} 2 \cdot x + 3 \\ x - y = 1 \end{cases} \right)$	$(y=6, \{x,y\})$ x=-	$\frac{9}{5}$ and $y = \frac{4}{5}$ solve	$\begin{pmatrix} x^2 dx = 10, b \\ 0 \end{pmatrix}$	b=30 ³	$solve(e^{-27,x})$ $solve(1000 \cdot (0.85)^{t} \le 500,t)$	/≥4.26502
solve $\left(\begin{cases} 2^{*}x+3\\ x-y=1 \end{cases} \right)$	(x,y) = (x,y) (x,y)	$\frac{9}{5}$ and $y = \frac{4}{5}$ solve	$\begin{pmatrix} x^2 dx = 10, b \\ 0 \end{pmatrix}$	<i>b</i> =30 ³	solve $(1000 \cdot (0.85)^{t} \le 500 t)$	<i>t</i> ≥4.26502

Factorising algebraic expressions and real numbers

2: Factor

This command is used for factorisation.

Factorisation over the rational numbers is obtained by not specifying the variable, whereas factorisation over the real numbers is obtained by specifying the variable.

The following screens illustrate its use.

< 1.1 ≥	•TI-Nspire	rad 🚺 🗙	4 1.1 Þ	*TI-Nspire	rad 📗 🗙	4 1.1 ≯	*TI-Nspire	rad 🛐 🗙
factor(2.x4-x2)	x ²	. (2·x ² -1)	$factor(a^2-b^2)$		(a+b)· (a-b)	factor(24)		23.3
factor(2.x4-x2,x)			$factor(a^3-b^3)$	(a-b)-	(a ² +a·b+b ²)	factor(-24)		-1.23.3
	$x^2 \cdot (\sqrt{2} \cdot x - 1)$	$(\sqrt{2} \cdot x+1)$	a factor	1+1	x ²	factor(1024)		210
factor(x3-9-x2+1	3·x-5,x)		a (x-1 (x-	-1)2	(x-1) ²	factor(1001)		7.11.13
(x-	1)· (x+√11 -4)· (x-√11 -4)	1			factor(201) 2	18. 38. 54. 72. 1	1 • 13 • 17 • 19
1		~				1		

Expanding algebraic expressions

3: Expand

This command is used for expanding out expressions.

By specifying the variable, the expanded expression will be ordered in decreasing powers of that variable. Symbolic expressions can only be expanded for an appropriate domain.

4 1.1 ≥	*TI-Nspire	RAD 🛛 🗙 4 1.1 ▶	*TI-Nspire	RAD 🗎 🗙 🖣 1.1 🕨	*TI-Nspire	RAD 📗 🕽
expand $((a+b)^3)$	$a^3 + 3 \cdot a^2 \cdot b + 3$	$a \cdot a \cdot b^2 + b^3$ expand	$\frac{1}{2 \cdot (x-1)}$	$\frac{1}{2 \cdot (x+1)}$ expand (a')	n) ⁿ)	$(a^m)^n$
expand $((a+b)^4$	$(a^3, b+6, a^2, b^2+4)$	$(x^{3}+b^{4})$	+2·x+1	1 2 expand	$(n)^n)_{\alpha>0}$	a ^{m• n}
expand((a+b)4	(a)	expand -	x ² -1	+1 x-1 expand(in(a· b))	$\ln(a \cdot b)$
b ⁴ +4	· b ³ · a+6· b ² · a ² +4	4. b. a ³ +a ⁴ 1		expand(in($(a \cdot b)) a>0 and b>0$	$\ln(a) + \ln(b)$
1				- 1		

Resolving an algebraic expression into partial fractions

Q: Resolve $\frac{3x+5}{(x-1)(x+3)}$ into partial fractions.

A:

Use (menu) > Algebra > Expand as shown.	4 1.1 ▷	*TI-Nspire	rad 📗 🗙
Note: You can access the fraction template $using(ctrl)(\div)$.	expand $\left(\frac{3}{(x-1)}\right)$	$\left(\frac{x+5}{x+3}\right)$	$\frac{1}{x+3} + \frac{2}{x-1}$
	T		

Chapter 2: Number Systems and Sets

Finding the prime decomposition of a natural number

The prime decomposition of a natural number	∢ 1.1 ▶	*TI-Nspire	rad 📗 🗙
can be obtained using (menu) > Algebra >	factor(24)		23.3
Factor as shown.	factor(-24)		-1·2 ³ ·3
	factor(1024)		210
	factor(1001)		7.11.13
	1		
	- 1		+

Finding the highest common factors of two numbers

	The highest common factor of two numbers	₹ 1.1 ►	•TI-
	(also called their greatest common divisor)	gcd(250,800)	
	can be found by using the command gcd()	gcd(gcd(50,745)	.585)
	from (menu) > Number > Greatest Common	Sea(Sea(ee), 10)	,,
	Divisor , or by just typing it in, as shown.	1	
No	te: Nested gcd() commands may be used to fin	d the greatest co	ommo

∢ 1.1 ▶	*TI-Nspire	rad 📋 🗙
gcd(250,800)		50
gcd(gcd(50,7	45),585)	5
Ĩ		
the greatest	common diviso	r of

Finding the lowest common multiple of two numbers

Using the TI-Nspire

several numbers.

The lowest common multiple of two numbers (also called their *least common multiple*) can be found by using the command **lcm()** from <u>menu</u> > **Number** > **Least Common Multiple**, or by just typing it in, as shown.

(1.1 ≥	*TI-Nspire	PAD
lcm(24,36)		72
lcm(256,100)		6400

Chapter 3: Sequences and Series

Generating the first *n* terms of an explicitly defined sequence of numbers

Q: Generate the first 10 terms of the sequence of numbers defined by the rule $t_n = 3 + 4n$.

To generate the first 10 terms of the sequence	4 1.1 ▶	*TI-Nspire	RAD 🗻 🗙		
defined by the rule $t_n = 3 + 4n$, complete as shown. The assignment symbol := is	n:={1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10}				
accessed using etrl (H).	tn:=3+4· n	7,11,15,19,23,27,31	,35,39,43}		
Note: Assigning (storing) the resulting list as <i>tn</i> e If preferred, the variable <i>tn</i> can be entered a which is accessed via [14].	nables the sequence t_n using the	uence to be gra subscript temp	uphed. late 밐,		

Generating and graphing the first *n* terms of a recursively defined sequence of numbers

Q: Generate the sequence defined by the recurrence relation $t_n = t_{n-1} + 3$, $t_1 = 1$.

/	۱	
	۱	•

А:

- To graph the sequence, open a Graphs application
 (ctrl) 1 > Add Graphs).
- Graph the sequence as a scatter plot using menu >
 Graph Entry/Edit > Scatter Plot. Enter the list variables as n and tn in their respective fields.
- Set an appropriate window using menu > Window/Zoom > Zoom - Data.
- 1.1 1.2 TI-Napire RAD X
- Note: It is possible to see the coordinates of the points: <u>menu</u> > Trace > Graph Trace. The scatter plot can also be graphed in a Data & Statistics page.
- Alternatively, the sequence can be graphed directly in the sequence plotter (<u>menu</u>) > Graph Entry/Edit
 > Sequence > Sequence).
- Enter the rule u1(n) = u1(n-1) + 3 and the initial value 1. Change **nStep** to 10.
- Set an appropriate window using menu > Window/Zoom > Zoom - Fit.
- Use ctrl T to show a table of values.

Chapter 9: Combinatorics

Evaluating permutations

Q: Evaluate $^{7}P_{4}$.

A:

• To evaluate ${}^{7}P_{4}$, use menu > Probability >	∢ 1.1 ▶	*TI-Nspire	rad 📋 🗙
Permutations as shown.	nPr(7,4)		840
	<u>E</u>		
Note: Alternatively, you can simply type npr(7, 4	4). The comma	nd is not case so	ensitive.

Evaluating combinations

Q: Evaluate ²⁰C₁₀.

A:

• To evaluate ${}^{20}C_{10}$, use menu > Probability >	4 1.1 ▶	*TI-Nspire	RAD 🗐 🗙
Combinations as shown.	nCr(20,10)		184756
	1		
Note: Alternatively, you can simply type ncr(20, 1	0). The comman	nd is not case	e sensitive.

Chapter 11: Matrices

Performing arithmetic operations on matrices

Finding the inverse and the determinant of a matrix

Q: For
$$A = \begin{bmatrix} 3 & 6 \\ 6 & 7 \end{bmatrix}$$
, find A^{-1} and $\det(A)$.

А:

	[3	2	1]
<i>Q: Find the inverse of the matrix</i>	5	3	0
	l1	2	4

A:

accessed using (The inverse of a	() Complete the matrix is obtained	pop-up screen by raising the	as sho matriy	wn belc c to the j	ow. power of -1	1.1	
< 1.1 ×	*TI-Nspire	rad 🖩 🗙	₹ 1.1	►	*TI-Nspire		PAD 📋 >
1	Create a Matrix Number of rows: 3 Number of columns: 3		$\begin{bmatrix} 3 & 2 \\ 5 & 3 \\ 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}^{-1}$	$\begin{bmatrix} 4\\ -2\\ 3\\ 7\\ 3 \end{bmatrix}$		$\begin{bmatrix} -1\\ 5\\ 3\\ -1\\ 3 \end{bmatrix}$
	OK Car	ncel	1				

Chapter 14: Simulation, Sampling and Sampling Distributions

Generating random numbers

■ In a Calculator page, go to menu >	4 1.1 ▶ *TI-N	Ispire RAD 📗 🗙
Probability > Random > Seed and enter	RandSeed 3653	Done
the last 4 digits of your phone number.	rand()	0.533502
This ensures that your random-number starting point differs from the calculator default.	randint(2,4,5)	{3,2,2,3,2}
 For a random number between 0 and 1, use (menu) > Probability > Random > Number. 		
For a random integer, use menu > Probability To obtain five random integers between 2 and randInt(2, 4, 5) as shown.	> Random > Integer. 4 inclusive, use the cordinate of the cordin	mmand

Simulating samples from a normal distribution

Q: Generate the sample means for 10 random samples of size 25 from a normal population with mean 100 and standard deviation 15.

А:

To generate the sample means for 10 random samples of size 25 from a normal population with mean 100 and standard deviation 15:

- Start from a Lists & Spreadsheet page.
- Name the list 'iq' in Column A.
- In cell A1, enter the formula using menu >
 Data > Random > Normal and complete as:
 = mean(randnorm(100, 15, 25))
- Use menu > Data > Fill to fill down to obtain the sample means for 10 random samples.

For a large number of simulations, an alternative method is easier.

To generate the sample means for 500 random samples of size 25, enter the following formula in the formula cell of Column A:

= seq(mean(randnorm(100, 15, 25)), k, 1, 500)

The dotplot on the right was created this way.

Chapter 17: Graphing Functions and Relations

Graphing modulus equations

```
Q: Graph the equation y = |x - 3| + 1.
```

A:

Graphing parametric equations

Q: Plot the graph of the parametric curve given by $x = 2\cos(3t)$ and $y = 2\sin(3t)$.

А:

Chapter 18: Complex Numbers

Setting a CAS calculator to incorporate complex numbers

Set to complex mode using \textcircled{G} on > Settings >	4 1.1 ▶	*TI-Nspire	rad 📋 🗙
Document Settings. Select Rectangular from the	√-1		· · · ·
Real or Complex field.	√-1 6		41
Note: The square root of a negative number can be found only in complex mode. But			
most computations with complex numbers ca	complex numbers can also be performed in real mode.		

Performing arithmetic operations on complex numbers

■ The results of the arithmetic operations +, -,	∢ 1.1 ≯ •	TI-Nspire RAD 🗐 🗙
\times and \div are illustrated using the two complex	2+3• i+3+4• i	5+7• <i>i</i>
numbers $2 + 3i$ and $3 + 4i$.	2+3· i-(3+4· i)	-1-1
Note: Do not use the text <i>i</i> for the imaginary	(2+3· i)· (3+4· i)	-6+17• <i>i</i>
constant. The symbol <i>i</i> is found using $\overline{\pi}$.	2+3· i	18 1
or the Symbols palette (ctrl)(a)).	3+4· i	25 25

Finding the real part of a complex number

To find the real part of a complex number, use	4 1.1 ▶	*TI-Nspire	rad 📗 🗙
(menu) > Number > Complex Number Tools >	1	a	1
Real Part . Alternatively, type real(.	a+i	a ² +1	a ² +1
	real(-1)		<u>a</u>
	(a+i)		a ² +1

Finding the modulus and the conjugate of a complex number

To find the modulus of a complex number,	4 1.1 ▶	*TI-Nspire RAD 📗	×
use menu > Number > Complex Number	(a+b· i)2	$a^2-b^2+2\cdot a\cdot b\cdot i$	i.
Tools > Magnitude. Alternatively, use $ \Box $	$ (a+b, j)^2 $	a ² +b ²	2
from the 2D-template palette \square or type abs(.	1(4+0-1) 1	<i>u</i> + <i>b</i>	
To find the conjugate of a complex number,	$\operatorname{conj}((a+b\cdot i)^2)$	$a^2-b^2-2\cdot a\cdot b\cdot i$	(
use (menu) > Number > Complex Number	1		
Tools > Complex Conjugate. Alternatively,			
type conj(.			

Factorising polynomial expressions and solving polynomial equations over complex numbers

- To factorise polynomials over the complex numbers, use menu > Algebra > Complex > Factor as shown.
- To solve polynomial equations over the complex numbers, use menu > Algebra > Complex > Solve as shown.

√ 1.1 ▶	*TI-Nspire	RAD 📋 🗙
cFactor(z ² +1	6,z) (z-4-	$(i) \cdot (z+4 \cdot i)$
$cSolve(3 \cdot z^2 +$	-5-z+3=0,z)	
z	$=\frac{-5}{6}+\frac{\sqrt{11}}{6}$ i or $z=\frac{-5}{6}$	6 6 <i>i</i>
I.		
		*

Summary of essential skills

Topic chapter	By the end of this chapter, you should be able to do the following using a
	CAS calculator:
1: Reviewing Algebra; 4:	Solve algebraic equations
Additional Algebra	Factorise algebraic expressions
	Expand algebraic expressions
	Resolve an algebraic expression into partial fractions
	Solve simultaneous polynomial equations involving 2-3 unknown
	variables
2: Number Systems and Sets	Find the prime decomposition of a natural number
	• Find the highest common factor and lowest common multiple of two
	numbers
3: Sequences and Series	• Generate the first <i>n</i> terms of an explicitly defined sequence of
	numbers
	• Generate the first <i>n</i> terms of a recursively defined sequence of
	numbers
6: Proof	N/A
7: Logic	N/A
8: Algorithms	*See "Appendix D: Introduction to coding using the TI-Nspire" in the
	Interactive version of the Cambridge textbook
9: Combinatorics	Evaluate permutations and combinations
11: Matrices	Perform arithmetic operations on matrices
	Find the inverse and the determinant of a matrix
12: Graph Theory	N/A
14: Simulation, Sampling and	Generate random numbers
Sampling Distributions	Simulate samples from a normal distribution
15: Trigonometric Ratios and	Solve trigonometric equations
Applications; 16:	
Trigonometric Identities	
17: Graphing Functions and	Graph modulus equations
Relations	Graph parametric equations
18: Complex Numbers	Set your CAS calculator to complex mode
	Perform arithmetic operations on complex numbers
	Find the real part of a complex number
	Find the modulus of a complex number
	Find the conjugate of a complex number
	Factorise polynomial expressions over complex numbers
	Solve polynomial equations over complex numbers
20: Transformations of the	Perform operations on matrices
Plane	
21: Vectors in the Plane	N/A
23: Kinematics	N/A

Appendix: List of useful TI-Nspire CAS calculator shortcuts

Shortcut	Function
Ctrl + A	Select all
Ctrl + C	Сору
Ctrl + H	Find and replace
Ctrl + K	Select page (in split screen)
Ctrl + N	New document
Ctrl + O	Open document
Ctrl + R	Recalculate
Ctrl + S	Save document
Ctrl + V	Paste
Ctrl + W	Close current document
Ctrl + X	Cut
Ctrl + Y	Redo
Ctrl + Z	Undo
Ctrl + 1	Move to end of list/page down
Ctrl + 3	Page down
Ctrl + 4	Merge two pages into split screen
Ctrl + 7	Move to top of list/page up
Ctrl + 6	Convert split screen into two pages
Ctrl + 9	Page up
Ctrl + space	Underscore
Ctrl + tab	Toggle between split screen windows
Ctrl + tab	Toggle between open documents
Shift + (-)	Derivative
Shift + +	Integral
Shift + arrows	Highlight selected text
Shift + esc	Redo