PEARSON

Heinemann Physics 11 $4\mathrm{e}$

Physics formulae and data booklet

Year 11

Heating processes

first law of thermodynamics	$\Delta U = Q - W$
temperature change	Q = mc∆T
latent heat	Q = mL
	$Q = mL_{fusion}$
	$Q = mL_{vapour}$

Applying thermodynamic principles

Wien's law	$\lambda_{\rm max}T = 2.898 \times 10^{-3}$
rate of energy radiation	$P \propto T^4$
Stefan–Boltzmann equation	$P = e\sigma AT^4$
for objects at <i>T</i> in surroundings of <i>T</i> _s	$P = e\sigma A(T^4 - T_s)$

Electrical physics

current	$I = \frac{Q}{t}$
potential difference	$V = \frac{E}{Q}$
power	$P = \frac{E}{t} = VI$
Ohm's law	$I = \frac{V}{R}$ or $V = IR$

Practical electrical circuits

resistors in series	$R_{\rm T} = R_1 + R_2 + \dots + R_{\rm n}$
resistors in parallel	$\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm 1}} + \frac{1}{R_{\rm 2}} + \dots + \frac{1}{R_{\rm n}}$

The origins of everything

distance	$d = \frac{1}{p}$
Hubble's law	$v = H_0 d$
Hubble constant	$H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Particles in the nucleus

half-life; activity	$N = N_0 \left(\frac{1}{2}\right)^n; A = A_0 \left(\frac{1}{2}\right)^n$
Energy from the atom	
Einstein's mass–energy equation	$E = mc^2$
Scalars and vectors	
force due to gravity (weight)	$F_{g} = mg$
gravitational field strength near the surface of the Earth	<i>g</i> = 9.8 N kg ⁻¹
Linear motion	
displacement	s = final position – initial p
average speed	$V_{av} = \frac{d}{\Delta t}$
average velocity	$V_{av} = \frac{S}{\Delta t}$
	$V_{av} = \frac{u+v}{2}$
average acceleration	$a_{\rm av} = \frac{\Delta v}{\Delta t}$
equations of motion with constant acceleration	v = u + at
	$s=\frac{1}{2}(u+v)t$
	$s = ut + \frac{1}{2}\alpha t^2$
	$s = vt - \frac{1}{2}\alpha t^2$
	$v^2 = u^2 + 2as$
acceleration due to gravity at Earth's surface	<i>g</i> = 9.8 m s ⁻²
Momentum and force	
Newton's second law	$F_{\rm net} = ma$
	$F_{\rm net} = \frac{m(v-u)}{\Delta t}$
momentum	p = mv
law of conservation of momentum	$\Sigma p_{before} = \Sigma p_{after}$
where two objects collide and remain separate	$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$
where two objects collide and combine together	$m_1 u_1 + m_2 u_2 = m_3 v_3$
where one object breaks apart into two objects in an explosive collision	$m_1 u_1 = m_2 v_2 + m_3 v_3$
impulse	$I = \Delta p = mv - mu = F\Delta t$

position

Equilibrium of forces

$\tau = r_{\perp}F$
$F_{\rm net} = 0$
$F_{\text{net},x} = 0 \text{ and } F_{\text{net},y} = 0$
$F_{\rm net} = 0$ and $\tau_{\rm net} = 0$
$\Sigma \tau_{clockwise} = \Sigma \tau_{anticlockwise}$

Energy, work and power

work	W = Fs
kinetic energy	$E_{\rm k} = \frac{1}{2}mv^2$
gravitational potential energy	$E_{g} = mg\Delta h$
Hooke's law	$F = -k\Delta x$
elastic potential energy	$E_{\rm s} = \frac{1}{2}k\Delta x^2$
power required to keep an object moving at a constant speed	$P = Fv_{av}$
efficiency of energy transfer (in %)	efficiency (η) = $\frac{\text{useful energy transferred}}{\text{total energy supplied}} \times 100\%$
	$= \frac{\text{useful energy out}}{\text{total energy in}} \times 100\%$

Stars

speed of electromagnetic waves (light) in a vacuum $c = 299792458 \text{ m s}^{-1} \approx 3.0 \times 10^8 \text{ m s}^{-1}$

speed of light in a particular medium (wave equation for light)	$c = f\lambda$
period	$T = \frac{1}{f}$
Schwarzschild radius	$r_{\rm s} = \frac{2GM}{c^2}$

Forces in the human body

centre of mass	$x_{\rm cm} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n}$
stress	$\sigma = \frac{F}{A}$
strain	$\varepsilon = \frac{\Delta I}{I}$
Young's modulus	$E = \frac{\sigma}{\varepsilon}$

Nuclear medicine

absorbed radiation dose

dose equivalent

effective dose

Particle accelerators

	speed	of	acce	lerated	el	lectr	ons
--	-------	----	------	---------	----	-------	-----

Sport

coefficient of restitution	$e = \frac{V_2}{V_1} = \sqrt{\frac{h}{H}}$
angular speed	$\omega = \frac{\theta}{t} = 2\pi f$
linear and angular speed	$v = r\omega$
relationship between the force of friction and the normal force	$F_{\rm f} = \mu F_{\rm N}$
period of a pendulum	$T = 2\pi \sqrt{\frac{L}{g}}$
straight line equations of motion in the horizontal direction	s = ut = vt
equations of motion in the vertical direction	v = u + 9.8t
	$v^2 = u^2 + 19.6s$
	$s=\frac{1}{2}\left(u+v\right)t$
	$s = ut + 4.9t^2$
drag force	$F_{\rm D} = \frac{1}{2} C_{\rm D} \rho v^2 A$
terminal velocity when drag force on an object and weight of an object are equal	$v_{\rm t} = \sqrt{\frac{2mg}{C_{\rm D}\rho A}}$
Constants	
universal gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
mass of Earth	$M_{\rm E} = 5.98 \times 10^{24} \rm kg$
radius of Earth	$R_{\rm E} = 6.37 \times 10^6 {\rm m}$
mass of the electron	$m_{\rm e} = 9.1 \times 10^{-31} \rm kg$

charge on the electron

speed of light

 $AD = \frac{\text{energy absorbed by the tissue}}{\text{mass of tissue}}$ DE = absorbed dose × quality factor Σ(dose equivalent × *W*)

$$E_{\rm k} = \Delta E \text{ or } \frac{1}{2}mv^2 = {\rm eV}$$

 $e = -1.6 \times 10^{-19} \text{ C}$

 $c = 3.0 \times 10^8 \text{ m s}^{-1}$

Prefixes/Units

p = pico = 10^{-12} n = nano = 10^{-9} μ = micro = 10^{-6} m = milli = 10^{-3} k = kilo = 10^{3} M = mega = 10^{6} G = giga = 10^{9} t = tonne = 10^{3} kg