VCE MATHEMATICAL
METHODS UNITS 1 \& 2 ESSENTIAL MAS CALCULATOR SKILLS

INCL. WORKED EXAMPLES \& AN END-OF-YEAR skILL CHECKLIST a $f(x)=$

Contents

Topic chapters (Reference book: Jacaranda MQ Maths Methods 11) 2
Chapter 1: Lines and Linear Relationships 2
Chapter 3: Quadratic Relationships 5
Chapter 4: Cubic Polynomials; Chapter 5: Quartic Polynomials 8
Chapter 6: Functions and Relations 10
Chapter 8: Trigonometric Functions; Chapter 9: Trig. Functions and Applications 12
Chapter 10: Exponential Functions and Logarithms 14
Chapter 11: Intro. to Differential Calculus: Chapter 12: Differentiation and Applications 15
Chapter 13: Anti-differentiation and Introduction to Integral Calculus 19
Summary of essential skills 20
Appendix: List of useful TI-Nspire CAS calculator shortcuts 21

Topic chapters

Chapter 1 - Lines and Linear Relationships

Solving linear equations and inequalities

Q: Solve the equation $\frac{x-3}{2}-\frac{2 x-4}{3}=5$.
A:

Using the TI-Nspire

- To find the solution to the linear equation, use a Calculator application.
- Select menu $>$ Algebra $>$ Solve.
- Enter the equation

$$
\frac{x-3}{2}-\frac{2 x-4}{3}=5
$$

- Press enter to obtain the solution.

Note: A template for fractions may be obtained by pressing ctrl) \div.
Q : Solve the equation $a x+b=c x+d$ for x.
A:
Using the TI-Nspire

- To solve the literal equation $a x+b=c x+d$, use a Calculator application.
- Select menu $>$ Algebra $>$ Solve .
- Enter $a x+b=c x+d$ as shown.
- Press enter to obtain the solution.

Note: Ensure a multiplication sign is placed between the letters of the expression, otherwise the calculator will read them
 as a single variable rather than a product. That is, enter $a \times x$ and not $a x$.

Q: Solve the inequality $\frac{2 x+3}{5}>\frac{3-4 x}{3}+2$.
A:

Using the TI-Nspire
The inequality can be solved in a Calculator application.

- Choose solve() from the Algebra menu to give the solution to

$$
\frac{2 x+3}{5}>\frac{3-4 x}{3}+2
$$

Note: For the inequality signs template, press ctrl) \equiv.

Solving simultaneous equations

Q : Solve the equations $2 x-y=4$ and $x+2 y=-3$.
A:

Using the TI-Nspire

Calculator application

Simultaneous equations can be solved in a Calculator application.

Use menu > Algebra > Solve System of Equations > Solve System of Equations.

- Complete the pop-up screen.
- Enter the equations as shown to give the solution to the simultaneous equations $2 x-y=4$ and $x+2 y=-3$.

Note: The solution can also be found with solve $(2 x-y=4$ and $x+2 y=-3, x, y)$.

Graphing linear equations

Q: Sketch the graph of $6 x+3 y=9$.
A:

Using the TI-Nspire

To sketch the graph of $6 x+3 y=9$:

- Open a Graphs application: press Ω on and select the Graphs icon, or use ctrl) (1) and select Add Graphs.
- Equations of the form $a x+b y=c$ can be entered directly using menu) $>$ Graph Entry/Edit > Equation > Line. Enter as $6 x+3 y=9$.

Note: The window settings (menu) $>$ Window/Zoom > Window Settings) will have to be changed if the axis intercepts do not appear on the screen.

- The axis intercepts can be found using menu $>$ Geometry $>$ Points \& Lines $>$ Intersection Point(s). Select the x-axis and the graph to display the x-axis intercept. Select the y-axis and the graph to display the y-axis intercept.
- To show the coordinates of these points, use menu $>$ Actions > Coordinates and Equations and double click on each of the points.
- Press esc to exit the Coordinates and Equations tool.

Chapter 3 - Quadratic Relationships

Note: The following areas will not be covered in this chapter:

- Solving quadratic equations and inequalities (refer to chapter 1: Solving linear equations and inequalities)
- Solving simultaneous equations involving linear and quadratic equations (refer to chapter 1: Solving simultaneous equations).
- Solving systems of equations involving three or four unknown variables (refer to chapter 1: Solving simultaneous equations).

Expanding factorised polynomial expressions

Q: Expand the expression $(2 x-1)\left(3 x^{2}+2 x+4\right)$ using a CAS calculator.
A:

Using the TI-Nspire	
To expand the expression	
$\qquad$$(2 x-1)\left(3 x^{2}+2 x+4\right)$	expand $\left.(2 \cdot x-1) \cdot\left(3 \cdot x^{2}+2 \cdot x+4\right)\right)$
use menu) $>$ Algebra > Expand.	1

Factorising quadratic expressions

Q: Factorise the expression $6 x^{2}-13 x-15$ using a CAS calculator.
A:

Using the TI-Nspire

To factorise the expression $6 x^{2}-13 x-15$, use menu) $>$ Algebra $>$ Factor.

Completing the square for a quadratic expression

Q: Complete the square for the expression $x^{2}-5 x+2$, using a CAS calculator. A:

Using the TI-Nspire
Use menu > Algebra $>$ Complete the Square to rearrange the expression $x^{2}-5 x+2$.

Graphing quadratic equations

Q: Graph the equation $y=x^{2}+x-12$ in a CAS calculator.
A:

Using the TI-Nspire

To graph the quadratic function with rule $y=x^{2}+x-12$:

- Enter the rule in the entry line of a Graphs application as shown, and press enter.

Using menu > Window/Zoom > Window
Settings, select the window settings
$-10 \leq x \leq 10$ and $-15 \leq y \leq 15$ to obtain the graph shown.

Note: You can also double click on the end values to change the window settings.

Analysing quadratic graphs

Q : Graph the equation $y=\frac{1}{2} x^{2}-x-4$. Use the graph to determine the coordinates of its x intercept(s) and turning point.

A:
2. To view the key points, select:

- MENU
- 6. Analyze Graph
- 1. Zero or
- 2. Minimum or
- 3. Maximum

Follow the prompts to show the key points.

TI|THINK

DISPLAY/WRITE

1. On a Graphs page, complete the entry line as:
$f 1(x)=\frac{1}{2} x^{2}-x-4$
Then press ENTER to view the graph.

Finding the points of intersection between a parabola and a line graphically

Q: Graph the equations $y=x^{2}-3 x-4$ and $y=x+1$ and find the coordinates of their point(s) of intersection.

A:

1. On a Graphs page, complete the entry lines as:
$f 1(x)=x^{2}-3 x-4$
$f 2(x)=x+1$
Press ENTER after each entry to view the graphs.

2. To view the point of intersections, select:

- MENU
- 6. Analyze Graph.
- 4. Intersection

Follow the prompts to show the key points.

Chapter 4: Cubic Polynomials; Chapter 5: Quartic Polynomials

Note: The following areas will not be covered in this chapter:

- Factorising cubic/quartic expressions (refer to chapter 3: Factorising quadratic expressions)
- Solving cubic/quartic equations and inequalities (refer to chapter 1: Solving linear equations and inequalities)
- Graphing cubic/quartic equations (refer to chapter 3: Graphing quadratic equations).

Dividing polynomials

Q: Divide $3 x^{3}+2 x^{2}-x-2$ by $2 x-1$.
A:

Using the TI-Nspire

Use propFrac() from menu) > Algebra >
Fraction Tools > Proper Fraction as shown.

Analysing cubic/quartic graphs

Q: Graph the equation $y=x^{3}+2 x^{2}-5 x-6$. Use the graph to determine the coordinates of its maximum and minimum turning points.

A:
Using the TI-Nspire
In order to provide more detail, the coordinates of the turning points can be found with a CAS calculator.

- Enter $f_{1}(x)=x^{3}+2 x^{2}-5 x-6$ in a Graphs application.
- Choose a suitable window (menu) > Window/Zoom > Window Settings).

- Use menu > Analyze Graph > Maximum.
- Move cursor to the left of point (lower bound), click, move to the right of point (upper bound) and click to display the coordinates.
- Repeat for other points of interest.

Note: Alternatively, use menu $>$ Trace $>$ Graph Trace to find the coordinates of the two turning points. A label will appear near a turning point to indicate that the calculator has found a local maximum or a local minimum.

Finding the points of intersection between a cubic graph and a line graphically

Q: Graph the equations $y=x(x-1)(x+1)$ and $y=x$ and find the coordinates of their points of intersection (exact values are not required).

A:

1. On a Graphs page, complete the entry line for function 1 as:
$f 1(x)=x \cdot(x-1) \cdot(x+1)$ and the entry line for function 2 as:
$f 2(x)=x$ then press ENTER.

2. To find the points of intersection, press MENU, then select:
6: Analyze Graph
4: Intersection
Move the cursor to the left of the point of intersection when prompted for the lower bound and press ENTER.
Move the cursor to the right of the point of intersection when prompted for the upper bound and press ENTER.
Repeat this process to find the other points of intersection.

Chapter 6: Functions and relations

Note: The following areas will not be covered in this chapter:

- Solving equations and inequalities of the form $\frac{1}{x}=a, \frac{1}{x^{2}}=a, \sqrt{x}=a$ (refer to chapter 1: Solving linear equations)
- Graphing equations of the form $y=\frac{1}{x^{\prime}} y=\frac{1}{x^{2}}$, and $y=\sqrt{x}$ (refer to chapter 3: Graphing quadratic equations).

Defining functions and solving equations in terms of functions

Q : Let $f(x)=2 x-4$. Find the values of $f(2)$ and $f(t)$. Solve the equation $f(t)=t$ and the inequality $f(x) \geq x$.

A:
Using the TI-Nspire

- Use menu $>$ Actions $>$ Define to define the function $f(x)=2 x-4$. Find $f(2)$ and $f(t)$.
Use menu) $>$ Algebra $>$ Solve to solve the equation $f(t)=t$ and the inequality $f(x) \geq x$.

Note: The symbol \geq can be accessed from the symbols palette ctrr menu or by using (ctrl) \equiv and selecting \geq.

$4{ }^{1.1}$ MM182	mat x (1]
Define $f(x)=2 \cdot x-4$	Done
A2)	0
$A_{(}($	2. $t-4$
solve $(t)-t_{t}$)	$t=4$
solve $\left(f(x) \geq x_{x}\right.$)	$x \geq 4$

Restricting functions

Q : Define the function $f:[-1,1] \rightarrow \mathbb{R}, f(x)=x^{2}+x$. Find the values of x for which the minimum and the maximum values of f occur. Then, show the minimum and maximum of f graphically.

A:
Using the TI-Nspire

- In a Calculator application, use menu >

Actions $>$ Define to define the function $f:[-1,1] \rightarrow \mathbb{R}, f(x)=x^{2}+x$.

Note: The 'with' symbol | and the inequality signs can be accessed using ctrl) Θ.

- Use (menu) $>$ Calculus $>$ Function Minimum and menu $>$ Calculus $>$ Function Maximum to help determine the range of this restricted function. The range is $\left[-\frac{1}{4}, 2\right]$.

1.1	Done
Define $f(x)=x^{2}+x \mid-1 \leq x \leq 1$	$x=\frac{-1}{2}$
$f \operatorname{Min}(f(x) x)$	$x=1$
$f \operatorname{Max}(f(x), x)$	$\frac{-1}{4}$
$f(x) \left\lvert\, x=\frac{-1}{2}\right.$	2
$A(x) \mid x=1$	

1.1	$1.2>$	$\mathrm{MM1} 22 \ldots \ldots+\cdots$

The graph of $y=f(x)$ is plotted by entering
$f_{1}(x)=f(x)$ in a Graphs application.
Use menu $>$ Analyze Graph $>$ Minimum or
Maximum to show the key points.
Note:You can also enter the restricted function directly in the function entry line in the Graphs application if preferred.

Finding the inverse function of a function

Q : Find the inverse function f^{-1} of the function $f(x)=2 x-3$.
A:

Using the TI-Nspire	
To find the inverse of the function with rule	
$f(x)=2 x-3$, use menu $>$ Algebra $>$ Solve.	
Two methods are shown.	solve $(x-2 \cdot y-3, y)$ Define $f(x)-2 \cdot x-3$ $x=f(y)$ solve $(x-f(y) y)$

Chapter 8：Trigonometric Functions；Chapter 9：Trigonometric Functions and Applications

Converting angles between radians and degrees

Q：Convert 32° to radians and 2 radians to degrees．
A：

Using the TI－Nspire

To convert 32 degrees to radians，type
32° Rad as shown．
－The degree symbol ${ }^{\circ}$ is found in the symbols palette（ ctrl｜$⿴ 囗 十$ ）or the catalog（ $ص$（4）．
－The \rightarrow Rad command can be found in the catalog（＠（1）R）．
To convert 2 radians to degrees，type $2^{r} \rightarrow$ DD as shown．

－The radian symbol ${ }^{r}$ is found in the symbols palette（ctrl $⿴ 囗 十 ⺝$ ）or the catalog（■4）．
－The - DD command can be found in the catalog（®（1）（D）．
Note：If the calculator is in radian mode，you can convert 32° to radians by simply typing 32° then enter．If the calculator is in degree mode，type 2^{r} then enter．

Graphing sine，cosine and tangent functions

Q：Graph the function $y=\cos x$ for $-\pi \leq x \leq 3 \pi$ ．
A：

Using the Tl－Nspire

－A graph of $y=\cos x$ for $-\pi \leq x \leq 3 \pi$ can be plotted in a Graphs application by entering $f_{1}(x)=\cos (x) \mid-\pi \leq x \leq 3 \pi$ ．
－Change the window to suit（menu）$>$ Window／Zoom $>$ Window Settings）．

Finding a set of solutions to a trigonometric equation with a restricted domain
Q：Solve the equation $\sin (3 x)=\frac{-\sqrt{3}}{2}$ ，for $-\pi \leq x \leq \pi$ ．
A：

Using the TI-Nspire
Ensure that the calculator is in radian mode and complete as shown.

$$
\begin{gathered}
\text { MM1 } 82 \\
\text { solve } \left.\left(\sin (2 \cdot x)=\frac{-\sqrt{3}}{2} x\right) \right\rvert\,-\pi \leq x \leq \pi \\
x=\frac{-\pi}{3} \text { or } x=\frac{-\pi}{6} \text { or } x=\frac{2 \cdot \pi}{3} \text { or } x=\frac{5 \cdot \pi}{6}
\end{gathered}
$$

Finding the general solution(s) to a trigonometric equation
Q: Find the general solution(s) to each of the following equations: $\cos (x)=\frac{1}{2}$,
$\sqrt{3} \tan (3 x)=1, \sqrt{2} \sin (x)=1$.
A:

Using the TI-Nspire	
Check that the calculator is in radian mode.	$4{ }^{1.1}$ M ${ }^{\text {M182 }}$
a Use menu $>$ Algebra $>$ Solve and complete as shown. Note the use of $\frac{1}{2}$ rather than 0.5 to ensure that the answer is exact.	$\begin{aligned} & \text { solve }\left(\cos (x)=\frac{1}{2} x\right) \\ & x=\frac{(6 \cdot n t+1) \cdot \pi}{3} \text { or } x=\frac{(6 \cdot n t-1) \cdot \pi}{3} \end{aligned}$
b 41.1	c 41.1
$\left\lvert\, \begin{array}{cc} \text { solve }(\sqrt{3} \cdot \tan (3 \cdot x)-1 x) & x=\frac{(6 \cdot n I+1) \cdot \pi}{18} \end{array}\right.$	$\begin{aligned} & \text { solve }(\sqrt{2} \cdot \sin (x)=1, x) \\ & \quad x=2 \cdot \boldsymbol{n} \boldsymbol{I} \cdot \pi+\frac{3 \cdot \pi}{4} \text { or } x=2 \cdot \boldsymbol{n} \boldsymbol{I} \cdot \pi+\frac{\pi}{4} \end{aligned}$

Chapter 10: Exponential Functions and Logarithms

Note: The following areas will not be covered in this chapter:

- Solving exponential and logarithmic equations and inequalities (refer to chapter 1: Solving linear equations and inequalities)
- Graphing exponential and logarithmic equations (refer to chapter 2: Graphing quadratic equations).

Finding the point of intersection between an exponential or a logarithmic graph and a line

Q : Plot the graph of $y=2^{x}$ and hence find the value of y when $x=2.1$, and the value of x when $y=9$.

A:

Using the TI-Nspire

Plot the graph of $y=2^{x}$.
a \quad - To go to the point with x-coordinate 2.1, use menu) $>$ Trace $>$ Graph Trace and type 2.1 enter.

- Press enter to paste the coordinates to the point.
- Press (esc) to exit the Graph Trace tool.

When $x=2.1, y=4.287$ (correct to three decimal places).
b - To find the value of x for which $y=9$, plot the graph of $y=9$ on the same screen and use menu $>$ Geometry $>$ Points \& Lines > Intersection Point(s).

- Press esc to exit the Intersection Point(s) tool.

When $y=9, x=3.170$ (correct to three decimal places).

Note: Alternatively, find the intersection point using menu) > Analyze Graph > Intersection.

Chapter 11 - Introduction to Differential Calculus: Chapter 12 Differentiation and Applications

Finding the average rate of change of a polynomial function over a certain domain Q: For the function $f(x)=x^{2}+2 x$, find the average rate of change for $x \in[2,3]$ and $x \in[2,2+h]$.

A:

Using the TI-Nspire

- For parts a and b, use the catalog to access the Average Rate of Change command (@(1)(A) and enter as:
$\operatorname{avgRC}($ expression, $x=$ initial value, step size)

1.1	MM1 82
avgRC $\left(x^{2}+2 \cdot x, x=2,1\right)$	7
Δ avgRC $\left(x^{2}+2 \cdot x, x=2, h\right)$	$h+6$

Finding the derivative of a polynomial function by the limit definition (first principles)
Q: For $f(x)=2-x^{3}$, find $f^{\prime}(x)$ by first principles.
A:

Using the TI-Nspire

- Define $f(x)=2-x^{3}$.
- Use menu $>$ Calculus $>$ Limit or the 2D-template palette (14) and complete as shown.

Finding the derivative of a polynomial function

Q: Differentiate $x^{5}-2 x^{3}+2$ with respect to x.
A:
For Example 7:

- Use menu $>$ Calculus $>$ Derivative and complete as shown.

Note: The derivative template can also be accessed from the 2D-template palette (14) Alternatively, using shift will paste the derivative template to the screen.

Finding the value of the derivative of a polynomial function at a certain point
$Q:$ For $f(x)=3 x^{3}-6 x^{2}+1$, find $f^{\prime}(1)$.
A:

For Example 8:

- Define $f(x)=3 x^{3}-6 x^{2}+1$.
- Use menu $>$ Calculus $>$ Derivative to differentiate as shown.
- To find the value of the derivative at $x=1$, use (menu) $>$ Calculus $>$ Derivative at a Point.

1.1	MM182
Define $f(x)=3 \cdot x^{3}-6 \cdot x^{2}+1$	DAD
$\frac{d}{d x}(f(x))$	$9 \cdot x^{2}-12 \cdot x$
$\left.\frac{d}{d x}(f(x)) \right\rvert\, x=1$	-3

Solving equations involving the derivative of a polynomial function

Q : For the curve $y=4-x^{3}$, find the value of y at the point where the gradient of the tangent line is -6 .

A:

Using the Tl-Nspire

- Define $f(x)=4-x^{3}$.

Solve the equation $\frac{d}{d x}(f(x))=-6$.

- Substitute in $f(x)$ to find the y-coordinates.

$1{ }^{1.1}$	
Define $f(x)=4-x^{3}$	Done
solve $\left(\frac{d}{d x}(f(x))-6 . x\right)$	$x=\sqrt{2}$ or $x=\sqrt{2}$
$A\{-\sqrt{2}, \sqrt{2}\})$	$\{2 \cdot \sqrt{2}+4,4-2 \cdot \sqrt{2}\}$
1	

Q: For the function $f(x)=3 x^{3}-4 x+1$, find the coordinates of the stationary points. A:

Using the TI-Nspire		
- Define the function $f(x)=3 x^{3}-4 x+1$.	$1{ }^{1.1}$	
Use (menu) $>$ Algebra $>$ Solve and menu $>$ Calculus $>$ Derivative to solve the equation $\frac{d}{d x}(f(x))=0$ and determine the coordinates of the stationary points.	Define $f(x)=3 \cdot x^{3}-4 \cdot x+1$	Done
	solve $\left(\frac{d}{d x}(f(x))=0 . x\right)$	$x=\frac{-2}{3}$ or $x=\frac{2}{3}$
	($\left\{\left(\left\{\frac{-2}{3} \cdot \frac{2}{3}\right\}\right)\right.$	$\left\{\frac{25}{9}, \frac{7}{9}\right\}$

Finding the limit of a polynomial function or a set of piecewise-defined polynomial functions

Q: Find $\lim _{x \rightarrow-1}\left(\frac{x^{2}-1}{x+1}\right)$.
A:

Q : For the function below, find $\lim _{x \rightarrow 1} f(x)$.

$$
f(x)= \begin{cases}x, & x<1 \\ 1, & x=1 \\ x^{2}, & x>1\end{cases}
$$

A:

1. On a Calculator page, press MENU and select:
2. Actions
3. Define

Complete the entry
line as:
Define
$f(x)= \begin{cases}x, & x<1 \\ 1, & x=1 \\ x^{2}, & x>1\end{cases}$
Then press ENTER.
Note: The piecewise
function template is
available by pressing
the $|\boldsymbol{c}|\left\{\begin{array}{l}\text { a } \\ \text { button, then }\end{array}\right.$
儓

Finding the equation of the tangent or normal line to a polynomial graph at a certain point
$Q:$ Find the equation of the tangent to the curve $y=x^{3}+\frac{1}{2} x^{2}$ at the point $x=1$.
A:
Using the TI-Nspire
Use menu) > Calculus > Tangent Line to calculate the tangent to the curve at $x=1$.

Q: Find the equation of the normal to the curve $y=x^{3}-2 x^{2}$ at the point $(1,-1)$.
A:
Using the TI-Nspire
Use menu > Calculus > Normal Line to calculate the normal to the curve at the point $(1,-1)$, i.e. when $x=1$.

1.1	MM182.......
$y=$ normalLine $\left(x^{3}-2 \cdot x^{2}, x, 1\right)$	$y=x-2$.

Chapter 13: Anti-differentiation and Introduction to Differential Calculus

Finding the antiderivative of a polynomial function
Q : Find $f(x)$ if $f^{\prime}(x)=x^{2}+2 x$ and $f(1)=1$.
A:
Using the TI-Nspire
For Example 27a:

- To find the general antiderivative, define the function $f(x)$ using menu $>$ Calculus $>$ Integral as shown.
- Check that c has not been assigned a value.
- For the specific antiderivative, find the value of c by solving $f(1)=1$.

$1{ }^{1.1}$ MM182	$\rightarrow \mathrm{PADK0}$
Define $f(x)=\int\left(x^{2}+2 \cdot x\right) d x+c$	Done
$A(x)$	$\frac{x^{3}}{3}+x^{2}+c$
solve $(f(1)=1, c)$	$c=\frac{-1}{3}$

Finding the definite integral of a polynomial function

Q : Find the value of $\int_{-1}^{2}\left(3 x^{2}+1\right) d x$.
A:

Finding the area under a graph of a polynomial function graphically

$Q:$ Find the area bounded by the line $y=2 x$, the x-axis and the lines $x=0, x=4$.
A:

Summary of essential skills

Topic chapter		By the end of this chapter, you should be able to do the following using a CAS
calculator:		

*CAS calculator tutorials for the Algorithms and Pseudocode chapter are not included in this document. Refer to the Jacaranda textbook for details.

Appendix: List of useful TI-Nspire CAS calculator shortcuts

Shortcut	
CtrI + A	Select all
Ctrl + C	Copy
Ctrl + H	Find and replace
CtrI + K	Select page (in split screen)
Ctrl + N	New document
Ctrl + O	Open document
Ctrl + R	Recalculate
CtrI + S	Save document
Ctrl + V	Paste
Ctrl + W	Close current document
CtrI + X	Cut
Ctrl + Y	Redo
Ctrl + Z	Undo
Ctrl + 1	Move to end of list/page down
CtrI + 3	Page down
Ctrl + 4	Merge two pages into split screen
Ctrl + 7	Move to top of list/page up
CtrI + 6	Convert split screen into two pages
Ctrl + 9	Page up
Ctrl + space	Underscore
Ctrl + tab	Toggle between split screen windows
Ctrl + tab	Toggle between open documents
Shift + (-)	Derivative
Shift + +	Integral
Shift + arrows	Highlight selected text
Shift + esc	Redo

